百题突击12:1,SVM算法的优缺点 2,SVM的超参数C如何调节 3,SVM的核函数如何选择 4,简述SVM硬间隔推导过程 5,简述SVM软间隔推导过程

琐碎记录 专栏收录该内容
40 篇文章 0 订阅

1,SVM算法的优缺点

优点

可以解决高维问题,即大型特征空间;
解决小样本下机器学习问题;
能够处理非线性特征的相互作用;
无局部极小值问题;(相对于神经网络等算法)
无需依赖整个数据;
泛化能力比较强;

缺点

当观测样本很多时,效率并不是很高;
对非线性问题没有通用解决方案,有时候很难找到一个合适的核函数;
对于核函数的高维映射解释力不强,尤其是径向基函数;
常规SVM只支持二分类;
对缺失数据敏感;

2,SVM的超参数C如何调节

C 类似于lamda, 不过相反,C越小,越能得到稀疏的模型。

3,SVM的核函数如何选择

核函数可以是线性,高斯函数等。取决于问题的复杂性。

在这里插入图片描述

4,简述SVM硬间隔推导过程
在这里插入图片描述

a. 定义间隔函数,构建约束条件,得到凸二次规划问题,作为原始最优化问题。
b. 应用拉格朗日函数,将带约束的优化问题,转换成了无约束的优化问题,并且二者等价解。
c. 根据拉格朗日对偶性,将原始问题转换为其对偶问题,此时二者等价解。
d. 求解支持向量。
5,简述SVM软间隔推导过程
○ 软间隔的“软”在于它允许一点点错误存在,也就是去容忍那些特异点的存在。
○ 定义loss函数 对偶+KKT

具体推导请看:
https://blog.csdn.net/github_31101389/article/details/106480409

6,附加题

在这里插入图片描述
CNN 中的 1*1 卷积有什么作用
https://blog.csdn.net/sscc_learning/article/details/79863922

目标检测里如何有效解决常见的前景少背景多的问题

常用解决样本数据不平衡思路都可。
b. 硬数据挖掘
c. 类平衡思路改进 损失函数

  • 0
    点赞
  • 0
    评论
  • 1
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值