Tutorial教程:知错就改,错了就罚,论训练深度学习如何选择损失函数

计算机视觉综述(一期) 同时被 2 个专栏收录
31 篇文章 28 订阅 ¥99.00 ¥99.90
67 篇文章 1 订阅

Tutorial教程:训练深度学习如何选择损失函数

xingbod@gmail.com


声明:本文为CSDN首发,谢绝转载,商业转载请联系笔者MrCharles本人获取同意

作为优化算法的一部分,必须反复估算模型当前状态的误差。这就需要选择通常称为损失函数的误差函数,该函数可用于估计模型的损失,以便可以更新权重以减少下次评估时的损失。通俗来讲,损失函数就是一种惩罚,如果你的错误率越大,那么我给你的惩罚就越多,模型就会根据当前的惩罚程度去更新模型,争取下次计算出来的错误率会变低,得到更少的惩罚。也就是我标题里面所说的,认错认罚。

神经网络模型从训练数据中学习输入到输出的映射,损失函数的选择必须与特定预测建模问题(例如分类或回归)的框架匹配。此外,输出层的配置还必须适合所选的损失函数。

在本教程中,您将发现如何针对给定的预测建模问题为深度学习神经网络选择损失函数。

完成本教程后,您将知道:

在回归问题中,如何配置均方误差模型以及其变体。
在二分类问题中,如何配置交叉熵和铰链损失函数模型。
在多分类问题中,如何配置多类分类的交叉熵和KL散度损失函数。

教程概述

本教程分为三个部分:他们是:

  1. 用于回归的损失函数
    均方误差损失 MSE
    均方对数误差损失 MSLE
    平均绝对误差损失 MAE
  2. 用于二分类损失函数
    二元交叉熵
    铰链损失
    平方铰链损失
  3. 用于多类分类损失函数
相关推荐
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值