自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

MrCharles在CSDN

涵盖生物特征识别,计算机视觉,信号处理,神经网络,模式识别等等。入门python, numpy,matlab等语言。隐私保护,生物特征模板保护,生物特征数据加密等研究分享。也会分享解读最新的计算机视觉研究成果,欢迎点赞,关注,订阅

  • 博客(452)
  • 资源 (12)
  • 论坛 (2)
  • 收藏
  • 关注

原创 CSDN学院:NumPy极简教程,欢迎订阅学习

NumPy是Python的最重要的扩展程序库之一,也是入门机器学习编程的必备工具。然而对初学者来说,NumPy的大量运算方法非常难记。本课程通过形象的图示来解析numpy,为您的编程助一臂之力。现在订阅课程享受优惠。优惠代码:NumPyProhttps://edu.csdn.net/course/detail/31568...

2021-01-10 17:34:20 925 2

原创 为什么OpenCV使用BGR而不是RGB?

https://learnopencv.com/why-does-opencv-use-bgr-color-format/Satya Mallick早期的开发者选择了BGR,为啥选择BGR呢?那时候流行的相机制造商和软件商都是用这个模式,例如微软使用的是BGR,微软的软件里面COLORREF的值的格式为0x00bbggrr。所以从那时候起,opencv就一直使用BGR。现在我们也还是使用BGR,这种反人类的设计,只能去习惯它(当然,早期它并不绝对反人类)。“Why not use RGB when e

2021-07-09 16:24:44 42

原创 Survey: A Survey on Image Tampering and Its Detection in Real-world Photos 图像仿冒

上图:人脸交换技术上图: 图像操作的相关概念一个tamper的例子

2021-07-09 11:38:32 20

原创 最近喜欢的几款乐器和民谣

阿朵使用的乐器:雨棍雨棍是天然仙人掌制作完成,雨棍声音一般来说是越长声音越好,另外持续的时间也越久。雨棍是模仿下雨的声音。这种乐器叫【rainstick】,起源于南美土著。老外很流行玩这个,演奏音乐的时候做伴奏。这起先是用于古代土著人祈求落雨的法器。所以叫【雨棒】。外面一般用一节空心的竹筒制作(当然也有其他材料),先在里面横插很多杆子(或是可以产生空隙的物件),留下空隙(从下图外形看起来有点像大号山药,上面的那些凹凸不平处其实是横穿竹筒的诸多杆子),然后填充金属小球或钉子,最后封死两头。演奏的时候拿

2021-07-08 09:24:07 57

原创 HSV三分量

1.如果想研究雾对图像HSV三个分量的影响,通过一个无雾图像的HSV三个分量与一个带雾图像的HSV三个分量进行对比,请问要用那些指标可以表示出这些分量的不同啊?图像的信噪比?清晰度?还是什么别的???2.rgb2hsv函数将图像转换到HSV空间后,再用imshow函数分别显示HSV三个分量的图像,那用imshow函数显示出来的三个图象是HSV三个分量吗?我看我得到的HSV三个分量图里面是以RGB三个数值来显示每一点的像素值的,那我的得到的是HSV三个分量的图吗?3.H,S,V不是表示的是色调,饱和度,亮

2021-07-07 20:33:30 43

原创 opencv 对齐两幅图片

https://learnopencv.com/feature-based-image-alignment-using-opencv-c-python/def alignImages(im1, im2): # Convert images to grayscale im1Gray = cv2.cvtColor(im1, cv2.COLOR_BGR2GRAY) im2Gray = cv2.cvtColor(im2, cv2.COLOR_BGR2GRAY) # Detect ORB f

2021-07-06 09:50:04 26

原创 纯RAW数据转换为DNG格式

手上有一个没有任何header信息的RAW文件,是从相机传感器直接输出的,格式是一个一维的数组,大小是1,310,720,也就是1024*1280.想使用rawpy来模拟ISP的处理流程,但是很不幸的是,rawpy不支持直接处理这种没有任何header信息的RAW文件。报错信息如下:LibRawFileUnsupportedError: b'Unsupported file format or not RAW file'好在,我找到了一个解决方案:(http://im.snibgo.com/proc

2021-07-06 09:20:43 74 1

原创 深圳来电(1)

自从开始在TCL研究院实习,生活作息变得非常规律和稳定,每天七点钟绝对会准时起床,因为约定的巴士只会在楼下等到七点半,过时不候。每天下午六点准时下班,约定的巴士在办公室楼下也只会等待一刻钟的时间。错过了就需要搭地铁了。我很喜欢这辆巴士,从阳台上北边沿着宝石路一路南下,东边是郁郁葱葱的羊台山,西边是忽隐忽现的铁岗水库,隐藏在茂密的山林之间。傍晚的时候,路边陈列紧致的山林依然失去了骄阳,而远处山坡隆起的地方依然是夕阳普照,有一丝丝的安祥。巴士每一天都是同样的乘客,司机也是同一个人,大致哪个站哪些人下车都已经

2021-07-05 20:46:54 88 1

转载 单目视觉>双目视觉>RGBD比较

目前,视觉SLAM(SLAM是“Simultaneous Localization And Mapping”的缩写,可译为同步定位与建图)可分为单目、双目(多目)、RGBD这三类,另还有鱼眼、全景等特殊相机,但目前在研究和产品中还属于少数。从实现难度上来说,大致将这三类方法排序为:单目视觉>双目视觉>RGBD。单目相机SLAM简称MonoSLAM,仅用一支摄像头就能完成SLAM。最大的优点是传感器简单且成本低廉,但同时也有个大问题,就是不能确切的得到深度。一方面是由于绝对深度未知,单目SL

2021-06-19 14:11:21 176

原创 有趣的漫画

2021-06-15 16:53:02 32

原创 高考加油,读书依然是成长最快的捷径

今天高考,作为受益于高考,受益于中国教育制度的过来人,今天想对所有考生说,尽力奋斗吧,读书依然是成长最快的捷径。当然,高考也并不是全部,他也不能决定终身。我也见过许多人考上了好大学,却虚度光阴。我想,高考的意义,在于提醒我们,时刻去拼搏,时刻进取,时刻保持积极乐观。加油。...

2021-06-07 18:41:17 45

原创 实验性综述:低光照图像增强

W. Wang et al.: Experiment-Based Review of Low-Light Image Enhancement Methods来自以上文章总结。

2021-05-26 15:14:57 93

原创 常见的数字图像处理

2021-05-25 10:08:08 46

原创 峰值信噪比和结构相似性

本文摘自黑龙江大学硕士论文: 基于U-Net网络的低光照图像增强算法的研究与实现MAX 当作 信号, MSE 当作 噪声

2021-05-19 18:07:59 119

原创 learning to see in the dark: 弱光场景下基于相机底层信号的图像处理

Chen, C., Chen, Q., Xu, J., & Koltun, V. (2018). Learning to see in the dark. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 3291-3300).针对以往的黑暗条件下图像处理的一些挑战,特别是短曝光的图像没有对应的ground truth的问题,该文提出了一个数据集,有一些列的短曝光的图像,同时.

2021-05-19 13:27:46 68 1

原创 宝石东路的日记(2)

最近家妹出了一些变故,不过好在问题不大,希望可以妥善解决。挫折,困难,是每个人都不可避免会遇到的。我们每个人需要过这一关。人生关键时期,总是会有一些其他的外因让我们偏离航道,让我们失去信心。可是我相信每个人都有能力去战胜,周围的师长,同学,朋友,他们都会给你一些帮助。多走出自己的内心,多和人交流沟通,始终可以解决问题的。身处其中,...

2021-05-16 12:06:35 51

原创 收到了CSDN送的图书,表示感谢|对《程序员的三门课》的一表格表示疑问

突然收到快递短信,去物业一看竟然是CSDN送的图书,感觉很惊喜。最近颇为忙碌,都没有仔细写过什么博客,不过这种有人惦记的感觉还是挺不错的。感谢CSDN。这本书读了一下,也挺推荐给大家的,感觉还是非常有用的。不过读者也许会有自己的想法,例如对不同编程语言的分类问题:书中的这个表格中,对于C#恐怕是仁者见仁智者见智,我不太赞同他的结论,按照道理C#应该不能算作动态语言,这一点希望各位读者在评论区给出自己的意见。网络上找了另外一张图,Y轴的Strong weak 表示语言是强类型还是弱类型,X轴的Dy.

2021-05-15 12:00:51 65 3

原创 宝石东路的日记(1)

一晃又是五月份了,时间实在是太快了。立夏时间,天气早就已经热起来了。找了许久的工作,实习,到现在也没有眉目。希望五月份能够好起来。

2021-05-05 22:19:04 49

原创 百题突击16:1,Roberta、Albert 分别对 Bert 做了哪些改进 2,XLNet 如何实现 Permutation Language Model 3,CycleGAN的生成效果为啥一般都

Roberta、Albert 分别对 Bert 做了哪些改进请参考:https://zhuanlan.zhihu.com/p/347846720XLNet 如何实现 Permutation Language Model请参考:https://zhuanlan.zhihu.com/p/70257427CycleGAN的生成效果为啥一般都是位置不变纹理变化,为啥不能产生不同位置的生成效果请参考:https://blog.csdn.net/weixin_41697507/article/detai

2021-04-27 21:25:52 57

原创 百题突击15:pytorch实现VGG16的网络/faster RCNN中RPN相比之前做了什么优化/dropout 是否用在测试集上/YOLO v3进行了几次下采样/列举几个梯度下降的方法

pytorch实现VGG16的网络:请参考:https://blog.csdn.net/qq_40360172/article/details/109176612faster RCNN中RPN相比之前做了什么优化:请参考:https://blog.csdn.net/weixin_30566111/article/details/96658575dropout 是否用在测试集上请参考:https://zhuanlan.zhihu.com/p/118390256YOLO v3进行了几次下采样

2021-04-26 21:30:16 78

原创 百题突击14:1,激活函数有什么作用,常用的的激活函数 2,怎么解决梯度消失问题 3,什么是端到端学习 4,Softmax的原理是什么?有什么作用?  5,CNN的平移不变性是什么?如何实现的? 6,

1,激活函数有什么作用,常用的的激活函数2,怎么解决梯度消失问题BN Relu使用 ReLU、LReLU、ELU、maxout 等激活函数sigmoid函数的梯度随着x的增大或减小和消失,而ReLU不会。使用批规范化通过规范化操作将输出信号xx规范化到均值为0,方差为1保证网络的稳定性.从上述分析分可以看到,反向传播式子中有ww的存在,所以ww的大小影响了梯度的消失和爆炸,Batch Normalization 就是通过对每一层的输出规范为均值和方差一致的方法,消除了ww带来的放大缩小的影响

2021-04-26 21:28:13 83 1

原创 百题突击13: 1,为什么必须在神经网络中引入非线性? 2,ReLU在零点不可导,那么在反向传播中怎么处理? 3,ReLU的优缺点 4,BN解决了什么问题 5,BN的实现流程

1,为什么必须在神经网络中引入非线性?2,ReLU在零点不可导,那么在反向传播中怎么处理?3,ReLU的优缺点4,BN解决了什么问题BN是由Google于2015年提出,这是一个深度神经网络训练的技巧,它不仅可以加快了模型的收敛速度,而且更重要的是在一定程度**缓解了深层网络中“梯度弥散”**的问题,从而使得训练深层网络模型更加容易和稳定。所以目前BN已经成为几乎所有卷积神经网络的标配技巧了。从字面意思看来Batch Normalization(简称BN)就是对每一批数据进行归一化,确实如此

2021-04-26 20:45:24 207

原创 百题突击11:1,请简述SVM 原理 2,SVM 为什么采用间隔最大化 3,SVM 为什么要引入 核函数 4,SVM 核函数之间的区别 5,为什么SVM对缺失数据敏感

1,请简述SVM 原理2,SVM 为什么采用间隔最大化3,SVM 为什么要引入 核函数4,SVM 核函数之间的区别5,为什么SVM对缺失数据敏感Self-attention对比RNN和CNN在处理NLP任务时分别有哪些优势...

2021-04-22 18:13:32 261

原创 百题突击10:1,简述kmeans流程 2,kmeans对异常值是否敏感?为何? 3,如何评估聚类效果 4,超参数k如何选择? 5,kmeans算法的优缺点

1,简述kmeans流程随机初始化k个中心点;计算所有样本到中心点的距离;比较每个样本到k个中心点的距离,将样本分类到距离最近的类别中;k个类别组成的样本点重新计算中心点(如在每一个方向上计算均值);重复2-4,直到中心点不再变化。2,kmeans对异常值是否敏感?为何?K-Means算法对初始选取的聚类中心点是敏感的,不同的随机种子点得到的聚类结果完全不同K-Means算法并不是适用所有的样本类型。它不能处理非球形簇、不同尺寸和不同密度的簇。K-Means算法对离群点的数据进行聚类时,K

2021-04-22 16:37:18 696 2

原创 百题突击9:1,简述XGBoost。 2,XGBoost和GBDT有什么不同? 3,XGBoost为什么可以并行训练? 4,XGBoost防止过拟合的方法? 5,XGboost为什么这么快?

1,简述XGBoost。2,XGBoost和GBDT有什么不同?3,XGBoost为什么可以并行训练?4,XGBoost防止过拟合的方法?5,XGboost为什么这么快?6,附加题(私聊老师)CV: GRU 和 LSTM 的区别Transformer 中的 encoder 和 decoder 的异同点...

2021-04-22 16:25:32 218

原创 百题突击8:1,简述GBDT原理。 2,GBDT常用损失函数有哪些? 3,GBDT如何用于分类? 4,为什么GBDT不适合使用高维稀疏特征? 5,GBDT算法的优缺点?

1,简述GBDT原理。2,GBDT常用损失函数有哪些?3,GBDT如何用于分类?4,为什么GBDT不适合使用高维稀疏特征?5,GBDT算法的优缺点?附加题:CV:

2021-04-22 16:19:26 168

原创 百题突击12:1,SVM算法的优缺点 2,SVM的超参数C如何调节 3,SVM的核函数如何选择 4,简述SVM硬间隔推导过程 5,简述SVM软间隔推导过程

1,SVM算法的优缺点优点可以解决高维问题,即大型特征空间;解决小样本下机器学习问题;能够处理非线性特征的相互作用;无局部极小值问题;(相对于神经网络等算法)无需依赖整个数据;泛化能力比较强;缺点当观测样本很多时,效率并不是很高;对非线性问题没有通用解决方案,有时候很难找到一个合适的核函数;对于核函数的高维映射解释力不强,尤其是径向基函数;常规SVM只支持二分类;对缺失数据敏感;2,SVM的超参数C如何调节C 类似于lamda, 不过相反,C越大,越能得到稀疏的模型。3,SV

2021-04-22 15:56:41 161

原创 K40自动重启/自动关机/时间系统混乱

接上一篇文章:K40自动重启的分析(RTC)今天早上再次异常自动关机,醒来打不开手机,一看关机了,赶紧开机,看到时间瞬间抓瞎:今天是4月21号,自动关机竟然回到了4月3号凌晨? 黑人问号?遂打电话给小米客服,要求换机!我会在这个博客里面更新后续。在15天内的,大家有问题的手机一定要去换好的。...

2021-04-21 09:24:51 916

原创 K40自动重启的分析(RTC)

还没有毕业,等着论文送审期间之前老手机坏掉了,屏幕花了。现在又没有收入,红米K40就像一束光照向我的黑暗人生。抢了几次都没有在平台上抢购到。。。但是经过网友指点,去了小米之家,终于预定到了。三天之后到货,拿到手真的是觉得太幸运了。艰难生活中总要有点色彩呀。但是好不容易买到的K40也给我带来了烦恼。他一直无故异常重启呀。。。。瞬间又不爱了。。。。我附上我的系统日志:14号当天拿到,在小米之家让小哥哥帮忙开机的,一切正常:我怀疑,这个RTC可能是有问题。查了一下资料,发现不简单呀。所谓RTC(R

2021-04-18 13:22:15 2211 2

原创 百题突击7:1,简述一下随机森林算法的原理 2,随机森林的随机性体现在哪里? 3,随机森林算法的优缺点? 4,随机森林为什么不能用全样本去训练m棵决策树? 5,随机森林和GBDT的区别?

文章目录1,简述一下随机森林算法的原理2,随机森林的随机性体现在哪里?3,随机森林算法的优缺点?4,随机森林为什么不能用全样本去训练m棵决策树?5,随机森林和GBDT的区别?1,简述一下随机森林算法的原理2,随机森林的随机性体现在哪里?3,随机森林算法的优缺点?4,随机森林为什么不能用全样本去训练m棵决策树?5,随机森林和GBDT的区别?...

2021-04-15 12:43:56 535

原创 百题突击6:1,什么是集成学习算法? 2,集成学习主要有哪几种框架, 并简述它们的工作过程? 3,Boosting算法有哪两类,它们之间的区别是什么? 4,什么是偏差和方差?Bagging可以减少弱分

文章目录1,什么是集成学习算法?2,集成学习主要有哪几种框架, 并简述它们的工作过程?3,Boosting算法有哪两类,它们之间的区别是什么?4,什么是偏差和方差?5,为什么说Bagging可以减少弱分类器的方差,而Boosting 可以减少弱分类器的偏差?1,什么是集成学习算法?2,集成学习主要有哪几种框架, 并简述它们的工作过程?3,Boosting算法有哪两类,它们之间的区别是什么?4,什么是偏差和方差?5,为什么说Bagging可以减少弱分类器的方差,而Boosting 可

2021-04-15 12:41:42 568

原创 百题突击5:1,简述决策树的构建过程 2,D3决策树与C4.5决策树的区别 3,CART回归树构建过程 4,决策树的优缺点

文章目录1,简述决策树的构建过程2,D3决策树与C4.5决策树的区别3,CART回归树构建过程4,决策树的优缺点5. 决策树如何防止过拟合?说说具体方法1,简述决策树的构建过程机器学习 | 决策树的生成过程是怎样?(一)http://www.woshipm.com/ai/1083031.html步骤一:将所有的特征看成一个一个的节点,eg(拥有房产、婚姻状态、年收入这些特征,我们可以看成一个一个的节点。)步骤二:遍历当前特征的每一种分割方式,找到最好的分割点eg(婚姻状态这个特征,我们可以按照单身

2021-04-13 16:43:23 355

原创 解决GitHub访问缓慢

https://www.eet-china.com/mp/a45791.htmlGitHub 镜像访问https://hub.fastgit.org也就是说上面的镜像就是一个克隆版的 GitHub,你可以访问上面的镜像网站,网站的内容跟 GitHub 是完整同步的镜像,然后在这个网站里面进行下载克隆等操作。...

2021-04-12 23:06:21 268

原创 百题突击4:1.逻辑回归相比线性回归,有何异同? 2.回1.写出全概率公式&贝叶斯公式 2.朴素贝叶斯为什么“朴素naive”? 3.朴素贝叶斯有没有超参数可以调? 4.朴素贝叶斯的工作流程是怎样的?

文章目录1.写出全概率公式&贝叶斯公式2.朴素贝叶斯为什么“朴素naive”?3.朴素贝叶斯有没有超参数可以调?4.朴素贝叶斯的工作流程是怎样的?5.朴素贝叶斯对异常值是否敏感?1.写出全概率公式&贝叶斯公式https://zhuanlan.zhihu.com/p/78297343https://www.jianshu.com/p/3ff548a8b3a3如果事件组B1,B2,… 满足1) B1,B2…两两互斥,即 Bi ∩ Bj = ∅ ,i≠j , i,j=1,2,…,且P(B

2021-04-12 15:37:17 325

原创 SVM 决策边界为什么theta和回归方程垂直?

看了Andrew的课,这一块很多人不懂,但是使用一个简单的例子既可以理解,假设x2=-x1,也就是x1+x2=0,那么θ1=1,θ2=1\theta_1=1,\theta_2 = 1θ1​=1,θ2​=1, 所以就是垂直了,如下图右上角。Charles@SZ

2021-04-10 10:39:00 447

原创 百题突击3:1.逻辑回归相比线性回归,有何异同? 2.回归问题常用的性能度量指标 3.分类问题常用的性能度量指标 4.逻辑回归的损失函数

文章目录1.逻辑回归相比线性回归,有何异同?2.回归问题常用的性能度量指标3.分类问题常用的性能度量指标4.逻辑回归的损失函数1.逻辑回归相比线性回归,有何异同?许多人对线性回归都比较熟悉,但知道逻辑回归的人可能就要少的多。从大的类别上来说,逻辑回归是一种有监督的统计学习方法,主要用于对样本进行分类。在线性回归模型中,输出一般是连续的,例如y=f(x)=ax+by=f(x)=ax+by=f(x)=ax+b对于每一个输入的x,都有一个对应的y输出。模型的定义域和值域都可以是[-∞, +∞]。但是对于

2021-04-09 08:40:57 407

原创 百题突击2:1.在模型评估过程中,过拟合和欠拟合具体指什么现象 2.降低过拟合和欠拟合的方法 3.L1和L2正则先验分别服从什么分布 4.对于树形结构为什么不需要归一化?

文章目录1.在模型评估过程中,过拟合和欠拟合具体指什么现象2.降低过拟合和欠拟合的方法3.L1和L2正则先验分别服从什么分布4.对于树形结构为什么不需要归一化?1.在模型评估过程中,过拟合和欠拟合具体指什么现象过拟合(overfitting)指的是模型在训练数据是表现非常好,但是在验证集上表现特别差。欠拟合(underfitting)指的是是模型在训练数据和验证集上表现都比较差。2.降低过拟合和欠拟合的方法降低过拟合的方法:减少特征的数量,你可以选择一下那些特征要使用,那些要丢弃,防止用太

2021-04-08 11:53:38 477

原创 百题突击1:为什么要对特征做归一化/什么是组合特征/如何处理高维组合特征/欧式距离与曼哈顿距离/为什么一些场景中使用余弦相似度而不是欧式距离

为什么要对特征做归一化 ?特征间单位和尺度差异影响计算(涉及或隐含距离计算的算法的时候):拿Angrew Ng的课程的房屋价格预测举例,房子有很多属性,例如面积x1,多少房间x2,以及多少卫生间x3。 那么如果不归一化,进行距离有关的计算时,单位的不同会导致计算结果的不同,尺度大的特征会起决定性作用(x1),而尺度小的特征其作用可能会被忽略(x2,x3),为了消除特征间单位和尺度差异的影响,以对每维特征同等看待,需要对特征进行归一化。归一化有利于收敛(梯度下降算法角度):原始特征下,因尺度差.

2021-04-06 23:32:25 618 1

原创 Coursera半价优惠

众所周知,Coursera是一个非常优秀的学习平台。根据这位大牛所说:我在纽约大学攻读计算机科学硕士的两年里,在 Coursera 平台上自学完成了 26 门课程,3 个专项系列(Specialization)证书,极大地提升了我在计算机科学领域的理论知识和编程能力。毫不夸张地说,在 Coursera 上学习到的知识和完成的软件项目很大程度上帮助我拿到并通过了北美顶尖科技公司的面试。Coursera 是一个非常棒的在线公开课程平台,无论你对理工科或者文科专业的某个领域感兴趣,都可以在这里学习到最前

2021-04-06 14:24:43 604 1

原创 一张图形象表示RGB 图像的卷积操作

https://www.coursera.org/learn/machine-learning-duke

2021-04-05 22:53:38 375

weixin_id_2_qrcode.zip

微信ID转二维码,加好友无忧。参考博文查看https://firstai.blog.csdn.net/article/details/109997330

2021-01-19

MU-Chinese-Course-Guide-2020_2.pdf

莫纳什大学课程中文简介

2021-03-19

rtl8821ce-dkms_5.5.2.1-0ubuntu3_18.04.1_all.deb

神舟笔记本电脑网卡驱动,ubuntu。神舟笔记本电脑网卡驱动,ubuntu。神舟笔记本电脑网卡驱动,ubuntu。神舟笔记本电脑网卡驱动,ubuntu

2020-08-29

GPU散热可视化视频动态图

GPU散热可视化视频动态图

2021-03-19

2021年广西大学各学科专业硕士研究生预计调剂人数需求表.docx

2021年广西大学各学科专业硕士研究生预计调剂人数需求表.docx

2021-03-19

2014_Fall_Happenings.pdf

2014_Fall_Happenings.pdf

2021-03-19

MMdnn.pptx

https://firstai.blog.csdn.net/article/details/108628300 Tutorial教程:使用MMdnn将mxnet模型转换为tensorflow 2.0/keras 模型-全网唯一 PPT 讲解

2020-11-20

MatlabProgressBar-master.zip

MATLAB进度条,

2020-08-29

极值统计的一些基本知识

极值统计的一些基本知识极值统计的一些基本知识极值统计的一些基本知识

2018-08-13

BecomingHumanCheatSheets.pdf

人工智能,神经网络,机器学习,深度学习和大数据小抄cheat sheets,人工智能,神经网络,机器学习,深度学习和大数据小抄cheat sheets

2019-12-16

Hadoop- The Definitive Guide, 4th Edition

Hadoop- The Definitive Guide, 4th Edition

2015-12-26

Hadoop01

hadoop学习PPT

2015-09-22

账号异常被冻结,请求解封-----CSDN 过分了吧

发表于 2018-01-27 最后回复 2018-08-26

我不知道触犯了什么敏感词,博文就是发不了---什么鬼

发表于 2018-01-27 最后回复 2018-01-27

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除